
WebSec21 – Project Report
Eric Armbruster, Florian Freund, Team btw we use Arch

1 Introduction

In the following we will describe the outcome of our four weeks project phase of the Web
Application Security course. During this project phase we analyzed selected components
of the Artemis interactive learning platform [2]. We mainly put our focus on the file
upload and download mechanisms, the markdown editor and the implementation of
access rights on different endpoints.

In order to carry out this analysis, we mostly relied on source code inspection via
techniques offered by the IntelliJ IDE (e.g. Find Usages, Debugger), but also employed
the developer tools of our browsers.

The remainder of this report is structured as follows: first, an overview of the inves-
tigations carried out for different components is provided in Section 2. Afterwards,
vulnerability and weakness findings are presented and discussed in Section 3 and in
Section 4. Next, bugs we encountered in Artemis are shortly described in Section 5.
Finally, the report is concluded in Section 6.

1

WebSec21 – Project Report Team btw we use Arch

2 Investigations

2.1 Markdown Editor and HTML Text Input Fields

Artemis offers numerous input fields that allow for the insertion of formatted text via
a Markdown editor. Internally, the application first converts the formatted text into
HTML and then embeds it into the page that is served to the user. Naturally this feature
demands a deep security inspection, as it could be an easy entry point for stored XSS
attacks [4] by malicious students or teaching assistants. For analyzing this component
we mainly relied on a close inspection of the source code, but also crafted several XSS
payloads and inserted them into various text fields.

Artemis relies on the DOMPurify [6] npm package for XSS sanitizing the output of the
Markdown to HTML converter. As this library has become an almost de facto standard
for this kind of sanitization, it is considered safe by us, however, one needs to ensure its
correct usage regardless. Also, Artemis uses version 2.2.9 of DomPurify, which is the
most recent version, and is not known to have any security vulnerabilities [7].

The main points of interest thus lie inside the htmlForMarkdown method, where we
need to ensure that the sanitizer is called correctly, and at the call sites of this method, as
potentially unsanitized HTML or Markdown could be concatenated after the sanitization
process. The method itself performs first the conversion from Markdown to HTML and
afterwards calls DOMPurify.sanitize. As explained in the DOMPurify documentation
[6], this call must be last and afterwards no modifications to the HTML must be made,
which is fulfilled here.

As the purpose of the Markdown editor is to allow formatted text, the call to DOM-
Purify.sanitize is handed a list of whitelisted HTML tags and attributes. For in-
stance, the editor allows the inclusion of links via the ’a’ tag. As we are not familiar
with DOMPurify, we checked manually whether this would allow the execution of
Javascript inside of the ’a’ tag with the href field (e.g. with the following payload: test [5]), but this only prevents DOM-
Purify from removing all ’a’ tags, and does not exclude href fields from sanitization.

Afterwards, we searched via the IDE for direct and indirect usages of htmlFor-
Markdown, mostly these are either calls to safeHtmlForMarkdown or calls to the transform
method of the pipe HtmlForMarkdownPipe. We then checked on these call sites whether
modifications of the HTML are done after the sanitization. Additionally, we looked for
input fields that have been overlooked regarding sanitization, but could not find any.

To summarize, the output sanitization via DOMPurify seems to be implemented
correctly and thoroughly. We could not find any security vulnerabilities within this
functionality. Also, we want to highlight that Artemis employs the secure by default
principle here by not allowing any HTML tags and attributes when the whitelist is left
undefined.

This analysis was carried out by both team members

2

WebSec21 – Project Report Team btw we use Arch

2.2 File Upload

File upload is an essential functionality in Artemis that lets students upload their so-
lutions to exams as well as exercises. Before carrying out analysis on this component,
we constructed a bullet-point list containing ideas of which kind of vulnerabilities we
expect and which kind of functionality would have to be inspected closer if found:

• Are file paths secured against directory traversal?

• File overwriting/leaking/creating

• What happens if files with wrong file endings are uploaded?

• If hashing is done, is it done securely?

• Can you submit late?

In the rest of this section, we will discuss some of the code areas that initially caught
our attention, but turned out to be entirely secure.

Hashing Artemis actually uses file hashing when a submitted file is saved on the server
in the save method in the FileUploadSubmissionService.java. There it employs the
insecure MD5 hashing function, however, but only to exclude errors during transmission
and copying of the file. The hash is therefore only used to validate the integrity of the
stored files and is not security critical.

Directory Traversal via URL Many endpoints in FileResource.java allow arbitrary
file names directly in the URL. We expected to find these endpoints vulnerable to a
path traversal attack there. However, when trying to exploit these endpoints, we get
HTTP 400 responses because the Spring security features block various security relevant
characters e.g. encoded slashes in URI path variables by default. Without the possibility
to inject slashes into those filenames, path traversal is not possible.

Wrong File Endings Uploading files with wrong file endings is possible (e.g. when
submitting a file exercise), as only the file endings are checked and not the mime type.
We hoped this could be used in combination with the XSS vulnerability described in Sec-
tion 3.2 such that you upload a file containing HTML but with a png file ending (which
would extend the vulnerability in Section 3.2 to arbitrary files). However, browsers
apparently use file endings to determine the file type, so this was not fruitful.

File Overwrite See Section 3.3

This analysis was carried out by both team members

3

WebSec21 – Project Report Team btw we use Arch

2.3 Investigated Modules

Additionally to the modules mentioned above, the following modules were investigated
(Including the resource classes, their service counterparts and the main object classes):

1. Assessment

2. Attachment

3. Complaint

4. Course

5. File*

6. Notification

7. SystemNotification

4

WebSec21 – Project Report Team btw we use Arch

3 Vulnerabilities Found

In total, we found four security vulnerabilities and extended the scope of another
vulnerability found by a different team.

3.1 Access Rights

Type Missing access rights checks

Status Unresolved, no response by Artemis team

Introduction Almost all endpoints in Artemis need to verify that the user is authenti-
cated and has the required access rights to perform a particular action, e.g. a new course
may only be created if that user is authenticated as admin. The access rights in Artemis
are checked in a two-step verification process. First, each endpoint needs to check
whether he or she has been assigned the role required to access this endpoint. Artemis
internally employs a hierarchical Role Based Permission System (RBAC) for that purpose.
The details about the defined roles and permissions are described in the documentation
[1]. In code checking the role is done via the @PreAuthorize(hasRole(<ROLE>)) Spring
annotation. The @PreAuthorize annotation is executed before the annotated method is
executed and allows the execution of the annotated method only if hasRole(<ROLE>)
returns true. The second verification step checks whether an authenticated user should
have access to a particular resource, e.g. a user with the role teaching assistant should
only be allowed to assess exercises of lectures where he or she actually is a teaching
assistant, not simply for all lectures. Artemis handles this by storing whether a user has
the right to access a particular resource (lecture, exercise, . . .) in its database and then
retrieving these permissions upon the execution of a particular method.

Description Generally speaking, for an endpoint to correctly verify access rights, both
of these checks must be performed. There are of course exceptions, for instance if an
endpoint may only be accessed with admin rights, the second step may as well be
omitted. From our perspective, we need to verify that these checks are done on each
endpoint and that the correct checks are performed.

The lecture attachment module is missing such checks on most endpoints. The affected
endpoints:

• createAttachment in AttachmentResource.java

• updateAttachment in AttachmentResource.java

• getAttachment in AttachmentResource.java

• getAttachmentsForLecture in AttachmentResource.java

5

WebSec21 – Project Report Team btw we use Arch

For all of them, the @PreAuthorize(hasRole(<ROLE>)) Spring annotation is present
to check the user role, but an actual access right check is missing.

Impact The impact of this vulnerability is estimated to be of low severity, because the
presented endpoints can only be accessed by users with the EDITOR role. Those are only
course organizers and therefore (usually) trustworthy. Nevertheless, those can overwrite
and add any files in others courses.

Workarounds and Fixes The deleteAttachment methods in the same class imple-
ments access control as expected. Access is limited to course instructors. This approach
should be adopted in the other methods to fix the issue.

3.2 XSS on File Download

Disclaimer: This vulnerability was found by team "Team 9 from Outer Space", our contribution
is only the extension of the vulnerability scope and the hot fix suggestion via Content-Disposition.

Type XSS

Status Fixed

Description Original vulnerability: lecture attachments are vulnerable to XSS attacks
by first uploading a malicious SVG file that contains Javascript, then on download the
Javascript is executed. We extended the scope of this vulnerability to the file upload
exercise mechanism and to HTML. To be more precise, when a file upload exercise is set
to accept SVG or HTML, the download of previously uploaded files is vulnerable to XSS.
For instance, the following basic payload works as a proof of concept for HTML based
XSS:

1 <html>
2 <script>alert("test")</script>
3 </html>

Listing 1: Basic HTML XSS for Proof of Concept

Impact The impact of this vulnerability is estimated to be of medium severity, as
SVG or HTML must be explicitly allowed as a file type for submission. However, this
is unlikely to be found anywhere in production, as Artemis targets mostly university
courses for Computer Science students, which means courses typically do not use HTML
and the creation of an exercise consisting of a single HTML file is found to be rather
unlikely. Despite this unlikely scenario, the potential consequences are severe. When an
admin or instructor presses download on such a maliciously prepared file, any actions
on the Artemis platform that are within this user’s permissions could be performed.

6

WebSec21 – Project Report Team btw we use Arch

Workarounds and Fixes As an immediate workaround, file upload exercises that
allow SVG or HTML should be disabled. The Artemis development team can easily fix
this by setting Content-Disposition: attachment instead of Content-Disposition:
inline in the HTTP response header. In code, the relevant method is buildFile-
Response in FileResource.java. Setting it to attachment forces the user to download
the file instead of viewing it inline in the browser [3], thus preventing the XSS. Since
07.07.2021: We confirm that the Content-Disposition fix resolves the problem.

3.3 Limited File Overwrite

Type file delete, file overwrite and file creation

Status Unresolved, no response by Artemis team

Description The request body of the endpoints createAttachment and updateAttachment
in AttachmentResource.java allows setting a file path via the JSON attribute link of
the Attachment object. The actual file upload and file save that needs to be done
when creating or updating an attachment is handled via the saveFile endpoint in
FileResource.java. Among under methods manageFilesForUpdatedFilePath is called
to actually store the file on disk. Particularly interesting is that a file path parameter
called newFilePath is passed that is taken from the link JSON API value and can be
controlled by an attacker without any sanitization.

The code below is an extract of the most important part of manageFilesForUpdated-
FilePath. The problem is that generateTargetFile is called with a file path and not as
the parameter name of said method implies with a file name. Moreover, the generate-
TargetFile method performs no sanitization if keepFileName is set to true, which is
fulfilled at least for the attachment endpoints listed above. Consequently, this can
be used to make generateTargetFile create the targetFile with empty contents at an
arbitrary location that overwrites the file previously saved at this location. Because of line
4 and 9 below, we can also fill the file with arbitrary contents:

1 public String manageFilesForUpdatedFilePath (..., String
newFilePath , String targetFolder , ...) {

2 ...
3 // Sets 'source ' to a previously by the attacker

uploaded file
4 Path source = Paths.get(actualPathForPublicPath(

newFilePath));
5 // Create/truncate file at arbitrary location
6 // and inject arbitrary path into 'targetFile '
7 File targetFile = generateTargetFile(newFilePath ,

targetFolder , keepFileName);
8 // Overwrite a file at an arbitrary path

7

WebSec21 – Project Report Team btw we use Arch

9 Files.move(source , targetFile.toPath (),
REPLACE_EXISTING);

10 ...
11 }

Listing 2: Extract of manageFilesForUpdatedFilePath method

Impact The impact of this vulnerability is estimated to be medium-to-low, as at mini-
mum the role editor is required to exploit it. Furthermore, it is limited by the requirements
for file uploads set in the handleSaveFile method in FileResource.java. This method
ensures that file names have one of the following file endings: png, jpg, jpeg, svg, pdf,
zip. Also, the uploaded files must adhere to the file size limit set in application.yml,
which is by default 10 MB.

Workarounds and Fixes The main problem here is that the file upload mechanism
first stores the file in a temporary path and then a second user request is expected to
make the server move the file into the final directory. In order for this to work, the
link attribute must contain a path to the temporary file. But this path can be set utterly
independent of the path of the actually uploaded file. We do not provide suggestion
for a fix, as this requires a change in the design of the upload mechanism and this most
likely would require some larger code changes.

In the following we discuss ways to fix the problem without major code changes.
The underlying problem is that the method generateTargetFile(newFilePath, ...)

is called in manageFilesForUpdatedFilePath with a file path and not as the parameter
of generateTargetFile implies with a file name. The best solution probably would be to
ensure it is only called with the file name. This could be done with the following code
that is already called in actualPathForPublicPath:

1 String filename = newFilePath.substring(
newFilePath.lastIndexOf("/") + 1);

Listing 3: Retrieve File Name from File Path

It is debatable, whether this call should be done in generateTargetFile or in manage-
FilesForUpdatedFilePath. In case it is done in the latter one needs to keep in mind
that this bug could reappear again as soon as a different method calls generateTarget-
File with an attacker controlled path as first argument. However, if this is solved in
generateTargetFile it would leave some code lines in manageFilesForUpdatedFile-
Path unprotected, which could lead to problems in the future as well. Another solution
to consider is to call it in both methods.

A different approach that was already employed in some other places in Artemis
would be to call removeIllegalCharacters in the manageFilesForUpdatedFilePath
method or in all endpoints that accept a file path. The method sanitizes file paths by
removing all "." and "/" characters from the argument it is handed.

8

WebSec21 – Project Report Team btw we use Arch

3.4 Arbitrary File and Folder Deletion

Type file and folder deletion

Status Unresolved, no response by Artemis team

Affected Endpoints The following endpoints are vulnerable to the file and folder
deletion attack:

• updateAttachment and deleteAttachment in AttachmentResource.java

• updateCourse and deleteCourse in CourseResource.java

• updateQuizExercise and deleteQuizExercise in QuizExerciseResource.java

Description The method manageFilesForUpdatedFilePath is also vulnerable to file
deletion. The oldFilePath parameter in said method is attacker controlled when one
of the affected endpoints listed above is called. The problem is that manageFilesFor-
UpdatedFilePath calls FileSystemUtils.deleteRecursively(oldFile), where oldFile
is the corresponding File object to the attacker controlled Path oldFilePath. As there
is no check whether the oldFilePath corresponds to a file (and not a directory), we can
also utilize this call to delete arbitrary folders recursively.

On a side note, initially it looked like the method actualPathForPublicPath, which
is called before the delete call, would sanitize this path, because it internally executes
publicPath.substring(publicPath.lastIndexOf("/") + 1);. However, later in that
function the unsanitized publicPath is concatenated again to the returned path if it also
contains the string files/attachments/attachment-unit (some other strings work as well).

In order to exploit this, create a lecture attachment. Edit the attachment and set the
link JSON attribute to something like files/attachments/attachment-unit/../../../../../../../<path
to delete>. Then edit the attachment again and set a different link (exact value does
not matter), this time the deletion will be executed, as the previousLink will be placed
in oldFilePath. Please note, the edits must not be done via the UI, as it sends requests to
multiple endpoints, instead ensure only the request to the updateAttachment endpoint
is sent. Instead of a second edit, one can also delete the attachment.

Impact This vulnerability is estimated to be of low-to-medium severity, as a recursive
folder deletion could be abused to destroy the system or delete uploaded files by disliked
students. However, editor rights are required, thus we think it is rather unlikely to be
exploited.

Workarounds and Fixes The main problem here is the same as discussed in the
Workarounds and Fixes paragraph in section 3.3.

But this issue can be fixed without major code changes as well.

9

WebSec21 – Project Report Team btw we use Arch

Firstly, this should be prevented by calling removeIllegalCharacters on oldFilePath
in manageFilesForUpdatedFilePath. Furthermore, the intention behind the call File-
SystemUtils.deleteRecursively(oldFile) is to delete a single file, thus Files.delete-
(path) or another method that only deletes a single file should be called.

3.5 Arbitrary Notification

Type Unrestricted notification (including spoofing another identity but excluding
system notifications) reading, creation, modification and deletion

Status Unresolved, no response by Artemis team

Affected Endpoints The following endpoints are vulnerable:

• createNotification and deleteAttachment in NotificationResource.java

• updateNotification and deleteCourse in NotificationResource.java

• deleteNotification and deleteQuizExercise in NotificationResource.java

• getNotification and deleteQuizExercise in NotificationResource.java

Note: System notifications are correctly restricted to the admin user.

Description Course instructors may want to create notifications for their students for
announcements. To do so, Artemis has a notification system that enables instructors to
create notifications for one specific user or for a whole group of users. This notification
is then shown to the target users when they visit Artemis the next time.

The recipient can check the notification author user to verify the validity of the content
and there is the first vulnerability. The createNotification endpoint allows to create
notifications with any recipient and with any author. There is no check whether the
provided author is actually the current user. It is the same for the updateNotification
endpoint. Any instructor can edit the notifications of everyone else. The next issue is
in getNotification. Any instructor can leak the content of all notifications. To do so,
the notification IDs must be leaked or just simply guessed. That is possible, because
the new notification IDs are only incremented and therefore predictable. Finally, in
deleteNotification any instructor can delete any notifications.

Impact This vulnerability is estimated to be of low-to-medium severity, as instructor
rights are required for all the endpoints, thus we think it is rather unlikely to be exploited.

Workarounds and Fixes To fix this issue, only two code lines are required. First add
the following code line into each of the endpoints:
User currentUser = userRepository.getUserWithGroupsAndAuthorities();
Then add a check that the current user is not spoofing the identity of another user:
if (currentUser != notification.author) throw ...

10

WebSec21 – Project Report Team btw we use Arch

4 Weaknesses Found

In this section we describe weaknesses found during our analysis of Artemis. This differs
from previous sections in that weaknesses, unlike vulnerabilities, are not immediately
exploitable, but pose a threat to application security in the long term. In total, we have
found one weakness.

4.1 Password Sharing with Third-Party Platforms

While other teams have already stated that passwords are stored insufficiently secure
within the Artemis database, we want to emphasize that Artemis’ handling of passwords
towards third-party platforms is not only convenient but also negligent.

Our reasoning for this is as follows: The user management components in Artemis for
GitLab and Jenkins feature methods (getCreateUserFormHttpEntity in JenkinsUser-
ManagementService.java and updateBasicUserInformation in GitLabUserManagement-
Service.java) that automatically create accounts on these platforms. The problem is
that these methods generously share credentials that are used university wide for logins
by students as well as teaching staff. We argue that this is problematic as it increases the
potential attack surface of not only the Artemis platform but also the attack surface of
universities or other institutions relying on Artemis. Furthermore, storing the credentials
at all in Artemis counters the idea of having a central identity provider (IDP).

To counteract the risks described, we strongly recommend the Artemis team to stop
storing any passwords at all for institutions that provide an IDP service. Since this
feature of automatic account creation on third-party platforms is probably also needed
in the future, we are suggesting to create accounts with randomly generated passwords,
notify the users about these via their emails and prompt them to change their passwords
immediately after login. Gitlab and Jenkins might also offer an API for creating tempo-
rary passwords that automatically prompts their users to change their passwords on
first login. This would certainly be less convenient for users, but also more secure and
more appropriate given the consequences that the leak of these credentials could have
in extreme cases.

Another potential solution for the Artemis instance at TUM (and at other institutions)
could be the use of LDAP. This is directly supported by GitLab [8] and also supported
by Jenkins [9], though in the form of a plugin. Currently, this authentication method is
already in use with the GitLab instance hosted by LRZ at gitlab.lrz.de and would offer
the same convenience as the original solution.

11

WebSec21 – Project Report Team btw we use Arch

5 Bugs

This section shows found bugs that have no impact on security.

5.1 Archive

The API endpoint method archiveCourse in CourseResource.java can be used to
archive courses after they ended. The end date of a course can be unset and there-
fore can be NULL. The method archiveCourse uses the end date but is missing a NULL
check.

1 public ResponseEntity archiveCourse(Long courseId) {
2 ...
3 if (now().isBefore(course.getEndDate ())) {
4 throw new BadRequestAlertException (...);
5 }
6 ...
7 }

Listing 4: Potential NullPointerException

Impact This bug has no impact on security, because Spring handles the exception.

Workarounds and Fixes Adding a simple NULL check before use is sufficient.

1 public ResponseEntity archiveCourse(Long courseId) {
2 ...
3 if (course.getEndDate () == null || now().isBefore(

course.getEndDate ())) {
4 throw new BadRequestAlertException("End date must be

set" ...);
5 }
6 ...
7 }

Listing 5: Potential NullPointerException

12

WebSec21 – Project Report Team btw we use Arch

6 Conclusion

To summarize, we have scrutinized several Artemis components during this project
phase and have found four vulnerabilities of low-to-medium security. Furthermore, we
have learned to establish at least a few structures to make analyzing large projects to-
gether (and alone) easier, more efficient and more fruitful. Such as good communication
about who does what and to take a moment before the analysis to think about what kind
of security bugs you expect to see in a particular component, which helps priming the
brain for the upcoming task.

About this course we think that it is a great opportunity to get a deep introduction
into security vulnerabilities of web applications. Moreover, we have learned a lot not
only about vulnerabilities, but also about some quirks in certain great — or not so great
— programming languages for the web, like Javascript and PHP. We hope to see this
course also being offered for future students interested in this topic!

13

WebSec21 – Project Report Team btw we use Arch

References

[1] “Artemis access rights.” (Jun. 26, 2021), [Online]. Available: https://docs.artemis.
ase.in.tum.de/admin/accessRights/.

[2] “Artemis: Interactive learning with individual feedback.” (Jul. 1, 2021), [Online].
Available: https://github.com/ls1intum/Artemis.

[3] “Content-disposition.” (Jul. 1, 2021), [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Content-Disposition.

[4] “Cross site scripting (xss).” (Jun. 25, 2021), [Online]. Available: https://owasp.org/
www-community/attacks/xss/.

[5] “Cross site scripting (xss) vulnerability payload lists.” (Jun. 25, 2021), [Online].
Available: https://github.com/payloadbox/xss-payload-list.

[6] “Dompurify.” (Jun. 25, 2021), [Online]. Available: https://github.com/cure53/
DOMPurify.

[7] “Dompurify vulnerabilities.” (Jun. 25, 2021), [Online]. Available: https://snyk.io/
vuln/npm:dompurify.

[8] “Gitlab ldap setup.” (Jul. 1, 2021), [Online]. Available: https://docs.gitlab.com/
ee/administration/auth/ldap/.

[9] “Jenkins ldap plugin.” (Jul. 1, 2021), [Online]. Available: https://plugins.jenkins.
io/ldap/#documentation.

14

https://docs.artemis.ase.in.tum.de/admin/accessRights/
https://docs.artemis.ase.in.tum.de/admin/accessRights/
https://github.com/ls1intum/Artemis
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://github.com/payloadbox/xss-payload-list
https://github.com/cure53/DOMPurify
https://github.com/cure53/DOMPurify
https://snyk.io/vuln/npm:dompurify
https://snyk.io/vuln/npm:dompurify
https://docs.gitlab.com/ee/administration/auth/ldap/
https://docs.gitlab.com/ee/administration/auth/ldap/
https://plugins.jenkins.io/ldap/#documentation
https://plugins.jenkins.io/ldap/#documentation

	Introduction
	Investigations
	Markdown Editor and HTML Text Input Fields
	File Upload
	Investigated Modules

	Vulnerabilities Found
	Access Rights
	XSS on File Download
	Limited File Overwrite
	Arbitrary File and Folder Deletion
	Arbitrary Notification

	Weaknesses Found
	Password Sharing with Third-Party Platforms

	Bugs
	Archive

	Conclusion

